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Motivation & goals
Uncertainty quantification for large-scale applications of materials fracture

The goals of FORMULATE

We will design a set of fundamentally novel mathematical approaches for UQ used to
predict and control the probability of a deformation (i.e., fracture) of a material,
leading to a catastrophic failure of a designed structure.

Critical limitation in deciding the reliability and lifetime of a designed structure for
application deployment to aerospace, marine and high-energy applications
[Materials genome initiative, 2011].

“The pentagon confronts new enemy: RUST” [Wired, 2012].

“...fighting corrosion costs the DOD (Air Force and Navy) over 3% of the
national GDP, or about $1,000 per person per year.”

“Recent blade failures underscore importance of risk mitigation” [The Bakken, 2014]

Gas turbine blades: “Failures in nickel-based superalloys can occur by
various mechanisms that are operative at high temperatures...typically creep
and stress rupture.”
Wind turbine blades: “Rapid large-scale structural fracture is not a common
failure mode and is often due to some sort of manufacturing defect.”
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Why UQ for fracture mechanics?
Broad impact on DOD applications
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The basic idea...

To improve the predictability of fracture models we will extract knowledge from both
fine-scale simulations and experimental data, which when combined with extreme-scale
computing, will be used to conduct simulation code verification, model calibration,
validation, bias correction, and even control of high-fidelity solutions.
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An overview of the tasks within FORMULATE
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A nonlocal model for fracture prediction

We propose a generalized continuum theory based on spatial integration, that
employs a nonlocal model of force interaction. Key components: 1 can recover
classical fracture mechanics or peridynamics through the definition of the constitutive
relationship; 2 no differentiability assumption of displacement fields.
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Nonlocal equation of motion

ρ(x)
∂2u

∂t2
(x, t) =

∫
D

{
T [x, t]

〈
x′ − x

〉
− T

[
x′, t

] 〈
x− x′

〉}
dVx′+b(x, t)

ρ material density, u displacement field, b body force density, D ⊂ R1,2,3.

Force vector state

T [x, t] 〈 · 〉: “bond” → force per volume squared 

xq@@I
x′
q
δ

D

H(x, δ)

Neighborhood

H(x, δ) :=
{
x′ ∈ Rd : ‖x′ − x‖ ≤ δ

}
⇒ T [x, t] 〈x′ − x〉 = 0, for ‖x′ − x‖ > δ

δ is the horizon (length scale)
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A nonlocal model for fracture prediction with uncertainty

Nonlocal equation of motion

ρ(x)
∂2u

∂t2
(x, t) =

∫
D

{
T [x, t] 〈ξ〉 − T

[
x′, t

]
〈−ξ〉

}
dVx′ + b(x, t) (1)

Random vector y1 ∈ Ud1 ⊂ Rd1 coming from the external loadings

Random vector y2 ∈ Ud2 ⊂ Rd2 coming from the material distribution

Random vector y3 ∈ Ud3 ⊂ Rd3 coming from the constitutive relation

In addition, we may have uncertainty in the initial and boundary conditions, e.g.,
displacement, traction.

Let U = Ud1 × Ud2 × · · · × Udn ⊂ Rd, (Ω,F , P ) a probability space, and y : Ω→ U a
random vector with joint probability density function % : U → R+

In this setting (Ω,F , P ) is equivalent to (Γ,B(Γ), %(y)dy), where B(Γ) denotes
the Borel σ-algebra on Γ and %(y)dy is the probability measure of y.

Goal: given a query y ∈ U , quickly approximate the solution map y 7→ u( · ,y).
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A nonlocal model for fracture prediction with uncertainty

Nonlocal equation of motion with uncertainty
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Grand challenges

We must overcome several challenges which arise when applying UQ methodologies to
the high-dimensional stochastic model for fracture prediction:

1 Thrust area 1: Rigorous mathematical analysis and massively scalable algorithms
which alleviate the curse of dimensionality (CoD) and reduce the computational
burden of accurate stochastic solutions;

2 Thrust area 2: Robust approaches that are capable of reducing model
uncertainties and improving model predictability, by assimilating experimental data
and exploiting multifidelity models;

3 Thrust area 3: A theoretical framework for stochastic design and decision-making
under uncertainty, that uses multiple, high volume data sources and multi-index
hierarchical modeling capabilities, and;

4 Thrust area 4: Scalable algorithms for UQ that exploit greater levels of
parallelism provided by emerging many-core architectures.
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Task 1
Best s-term linear and nonlinear methods

Let ν = (ν1, . . . , νd) ∈ Λ ⊂ Nd a multi-index set, and Ψν be multivariate polynomials.
Approximate the solution u by:

uΛ(x, t,y) =
∑
ν∈Λ

cν(x, t)Ψν(y) ∈ PΛ(U) = span{Ψν(y), ν ∈ Λ} (2)

The efficiency of such methods heavily depends on the selection of Λ.

Standard approaches: impose index sets Λ a priori. The cardinality of the
polynomial space PΛ(U) can grow exponentially with respect to the dimension d.

Tensor Product

Λ(w) = {ν ∈ N
N : max

1≤i≤N

νi ≤ w}
Total Degree

Λ(w) = {ν ∈ NN :
∑

νi ≤ w}

Hyperbolic Cross

Λ(w) = {ν ∈ NN :
∏

(νi + 1) ≤ w + 1}

Smolyak

Λ(w) = {ν ∈ NN :
∑

f (νi) ≤ f (w)},

with f (ν) = ⌈log2(ν)⌉, ν ≥ 2.

Goal: construct the “optimal” Λ ⊂ Nd has minimal cardinality and enables the
approximation of y 7→ u(y) with maximum accuracy for a given computational cost.

Clayton G. Webster and Pablo Seleson — EQUiPS Kickoff Meeting, DARPA — November 9-10, 2015 11/38



FORMULATE Team Motivation and goals Mathematical innovations Applications to nonlocal Deliverables

Best s-term approximations using L2(U , %) projections

Goal: Construct the optimal set Λbest
s of s most effective multi-indices with respect to

sharp estimates B(ν) of ‖cν‖V [Cohen, DeVore, Schwab ’12, ’13], [Tran, Webster, Zhang

’15]:

sup
y∈Γ

∥∥∥∥∥∥u−
∑
ν∈Λbest

s

cνΨν

∥∥∥∥∥∥
V

≤
∑
ν /∈Λbest

s

‖cν‖V ≤ Cεs e−κ(r,d)s ≤ ‖B(ν)‖`p(Nd)s
1− 1

p

Provides the sharpest realizable best s-term (sub-exponential) convergence rate
with optimal κ in very high-dimensions.

Challenge: Estimates of B(ν) are difficult and somewhat problem dependent.

Task 1.1: To develop a priori and a posteriori procedures for building Λbest
s in the

context of the nonlocal model (1).

a priori: are derived using knowledge from the uncertainty in the input data

a posteriori: adaptively build nested sequences (Λs)s≥0 of Λbest
s at a cost that

scales linearly in #(Λs): given Λs, construct Λs+1 by enriching Λs with the most
effective indices ν in its neighborhood, which results in the best residual reduction.
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Non-intrusive recovery of the best s-term approximation
1. Sparse interpolation in Λbest

s

Goal: Construct a hierarchical interpolant in PΛbest
s

(U), on a set of distinct collocation
points:

IΛbest
s

[u] =
∑
ν∈Λbest

s

d⊗
n=1

(
Jm(νn) − Jm(νn−1)

)
[u] and GΛbest

s
=

⋃
ν∈Λbest

s

d⊗
n=1

{yn,k}m(νn)
k=1

Jm(νn) is a sequence of one-dimensional Lagrange interpolation operators using
abscissas {yn,k}m(νn)

k=1 ⊂ Un, with m(ν) : N+ → N+ a strictly increasing function.

Challenge: To recover the best approximation: 1 the Lebesgue constant LΛbest
s

of
the underlying abscissas must grow slowly, and; 2 #(GΛbest

s
) = dim(PΛbest

s
(U)) = s

⇒ abscissas satisfy {yn,k}m(νn−1)
k=1 ⊂ {yn,k}m(νn)

k=1 and m(ν) = ν + 1.

Task 1.2: To explore greedy approaches, wherein, given the sequence {yk}K−1
k=1 , with

K = m(νn), the Kth abscissa is chosen as the extrema of some functional, e.g., a
residual (Leja points), Lebesgue function, etc.

Computationally construct the multi-dimensional interpolant, and theoretically
prove a sharp bound on the corresponding multi-dimensional Lebesgue constant.
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Non-intrusive recovery of the best s-term approximation
2. Compressed sensing reconstruction using weighted `1 and hard thresholding

Goal: Given a set Λ0 of N multi-indices (could be far from optimal), find an
approximation of (2) comparable to the best s-term (s� N).

cν = cν(x, t) is a function that belongs to a Banach space V ⇒ c ∈ VN , equipped
with the norm: ‖c‖V,p = (

∑N
i=1 ‖ci‖

p
V)1/p.

Challenge: Here compressed sensing reconstruction involves randomly sampling
u = (u(yk))k=1,...,m ∈ Vm, and solving the underdetermined linear system

u = Ψc, where Ψ = (Ψν(yi)) is an m×N sampling matrix.

⇒ c = argmin‖ĉ‖V,1 subject to u = Ψĉ.

Best available estimate to guarantee uniform recovery (with high probability) is
m ≥ CK2δ−2s log2(s) log(N) [Chkifa, Tran, Webster ’15]

Task 1.3: To guarantee the algorithms overcome the curse of dimensionality we will
develop innovative:

weighted `1 (e.g., ων = ‖Ψν‖∞) techniques for optimal recovery that exploit the a
priori and a posteriori decay of (‖cν‖V)ν∈Λ0 .

tractable “hard thresholding” operators that iteratively exploit the structure (e.g.,
lower or downward closed sets) of the best s-term index set.
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Task 2
A hierarchical Bayesian framework for inverse problems

Goal: Construct a hierarchical Bayesian framework to simultaneously quantify both
parameter and model-form uncertainties.

In a hierarchical Bayesian framework, we have

Hyper-prior: θ ∼ µθ, Prior: y|θ ∼ µy|θ, Data density: d|(y,θ) ∼ %d|(y,θ).

The QoI Q : U ×Θ→ R can be estimated by its posterior expectation

E(Q|d) =

∫
U×Θ

Q(y,θ)µ(y,θ)|d(dy, dθ) with
dµ(y,θ)|d

dµ0
(y,θ) =

1

Z(d)
%d|(y,θ)(d),

where Z(d) =
∫
%d|(y,θ)(d)dµ0 and µ0(dy, dθ) = µy|θ(dy)µθ(dθ).

Let θ to be a discrete random variable representing a set of alternative models:

– µθ|d(dθ) ∝
(∫
U %d|(y,θ)µy|θ(dy)

)
µθ(dθ) allows model selection.

– µy|d is the model-averaged posterior.

The overall task is to draw samples from the posterior µ(y,θ)|d or the marginals
µy|d :=

∫
Θ
µ(y,θ)|d( · , dθ) or µθ|d :=

∫
U µ(y,θ)|d(dy, · ).
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Derivative-free dimension-independent sampling algorithms

Goal: Develop black-box Markov chain Monte Carlo (MCMC) algorithms to sample
complex nonlinear and non-Gaussian posteriors over high-dimensional parameter spaces.

Challenge: Most MCMC methods suffer in certain limits, as the parameter
dimension dimU+dimΘ =: N →∞ or the likelihood variance σ → 0.

Dimension-independent (DI), likelihood-informed (LI) sampling algorithms:

DI. By deriving the algorithm in the limiting function space, stability is ensured in
the limit N →∞;

LI. Use of posterior concentration information from the likelihood Hessian ensures
stability in the limit σ → 0.

Task 2.1: Develop and analyze Hessian-free (black-box) DILI algorithms .

Likelihood-informed space will be identified from m−sample covariance with
m = O(N) (e.g. using robust regularized m-estimators);

Will be used within DILI-type, adaptive Metropolis, or map-based proposals;

Application within hierarchical models, for model selection and averaging, etc.
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Multilevel sequential Monte Carlo (MLSMC) samplers

Goal: Develop algorithms to sample complex nonlinear and non-Gaussian posteriors
with expensive forward model connecting parameter to data.

Challenge: the cost of sampling is the product of (a) the cost to sample a scalar
random variable and (b) the cost of a single deterministic solve at given accuracy.

Recently developed MLSMC samplers reduce cost for posterior sampling to the
minimum of (a) and (b).

Task 2.2: Develop, analyze, and use ML and multi-index (MI) SMC for hierarchical
Bayesian computation.

Current version assumes finite parameter. Extension will approximate continuous
parameter – multilevel in parameter also.
MI is a natural generalization of ML which will make the latter obsolete.
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Assimilating data for optimal recovery of the inverse map

Goal: Recover an element u of a Hilbert space H from the measurement data of the
form `j(u), j = 1, . . . ,m, where `j are known linear functionals on H.

We assume that all possible states of u are described by a solution manifold

M = {u(y) : y ∈ U}.

The data `j(u) for j = 1, . . . ,m constitute a subspace W ⊂ H, and the
measurements determines the projection PW [u] ∈ W.

The task is to construct a mapping A :W →M, such that an approximation û of
u can be defined by

û := A(PW [u]).

Challenge: it is usually expensive to find the optimal recovery of u in M, due to
the computational complexity of the underlying integro-PDEs.
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Reduced-basis methods for optimal recovery

Task 2.3: To construct a near optimal recovery of u by exploiting a finite sequence of
reduced-basis subspaces V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂M, where Vk approximates M with
accuracy εk for k = 0, . . . , n.

Develop novel iterative algorithms based on alternating projection techniques to
construct the optimal map A :W → K, where K is defined by

K :=

n⋂
j=0

Kj =

n⋂
j=0

{u ∈M : dist(u, Vj) ≤ εj}.

Develop an a posterior estimate for measuring the performance of the new
algorithms, which can serve both as a stopping criteria in the algorithms and a
method to derive convergence rates.

Theoretically analyze the optimality of the proposed method by proving that the
map A :W → K constructed using our algorithms has the following error bound

‖u−A(PW [u])‖ ≤ CA dist(u,K),

with the smallest constant CA.
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Probabilistic graphical model approach

Task 2.4:

Develop probabilistic graphical model framework for recovering the desired
posterior distribution or its marginals.

Develop novel nonparametric belief propagation algorithms by employing loopy
belief propagation algorithms.
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Task 3
Nonlocal constrained stochastic optimization under uncertainty

Goal: Find the material properties that match the desired material behavior
Find state u∗(y) and constitutive relationship T ∗(y) that solve

min
T ,u
K(T , u; g) subject to (1)

K(T , u; g) = E[‖u− g‖] + δ(T ) =
∫
U ‖u(y)− g(y)‖ρ(y)dy + δ(T ).

δ(T ) is the “cost” of T , e.g., the cost of manufacturing material with constitutive
relationship T .

g(y) is the desired state of the system (target).

Challenge: minimizing the statistics of the difference ‖u− g‖ does not result in best
match between the statistics of u(y) and g(y).

New optimization paradigm:

min
T ,u
M(T , u; g) subject to (1)

where M(T , u; g) =
∑Q
q=1 ‖E[uq]− E[gq]‖+ δ(T ), and Q ∈ N+
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Nonlocal constrained stochastic optimization
Stochastic optimization under equality and inequality state constraint

Task 3.1: To address the following fundamental problems

Analysis of the existence and uniqueness of the optimal solution

Derive optimality system for T ∗ and u∗(y)

Develop convergent finite element discretization schemes

Implementation of the resulting methods for select model problems

Assess the robustness of the solution, i.e., the sensitivity of u∗(y) to perturbations
of the constitutive relationship

Incorporate previously developed methods, for the underlying forward
approximation, to develop efficient approaches for stochastic optimization
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Risk-averse optimization
Optimization under inequality state constraint

Goal: devise optimization procedure that avoids catastrophic scenarios

Let F (u) be a functional and define undesirable situation by F (u) ≥ α.

Challenge: directly imposing −F (u) + α > 0 is not always feasible

Example: Suppose F (u) indicates damage to the material from impact and F (u) ≥ α
indicates critical damage that leads to system failure. We want to minimize the
expected damage under events appearing with probability 1− β, i.e., we accept risk β.

Task 3.2: To incorporate risk-averse approach to PDE context

minE[F (u)] = min(1− β)−1

∫
F (u)≥α̂β(u)

F (u)ρdy

where α̂β(u) = min{α̂ ∈ R : Ψ(u, α̂) ≥ β} and Ψ(u, α̂) =
∫
F (u)≤α̂ ρ(y)dy
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Task 4
Scalable sampling paradigm

Goal: develop sampling strategy that exploits extreme parallel architectures

Initial

Setup

Sample 1

Sample 2

Sample N

....

Adaptive

Refinement

Sample 1

Sample 2

Sample M

....

Recovering the best s-term approximation requires adaptive sampling

The current paradigm of adaptive sampling employs iterative approach

The next iteration cannot begin unless the entire current set has been computed

Multilevel methods, multifidelity models, and random hardware faults result in
large variability of runtime associated with each sample

The current sampling strategies are very sensitive to runtime fluctuations

Challenge: Develop a sampling strategy that avoids global iterations and exploits
massive parallelism
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Scalable sampling paradigm
Utilizing latest advanced in work-flow based on directed acyclic graphs

Task 4.1: Asynchronous sampling procedure

The directed acyclic graph (DAG) approach does not require a global decision

DAG-based job scheduling is the current practice for massive parallelism

Nodes of the graph correspond to samples

Edges correspond to dependence, i.e., information required to decide whether this
sample is needed to construct the best s-term approximation

The nodes and edges have to be constructed “on-the-fly”, unlike standard
applications of the DAG approach

Sample 1 Sample 2 Sample 3 Sample 4

Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15

Example: Samples 5 and 6 take less time to compute and samples 8 and 9 take more
time, then samples 10 and 11 can start without waiting for the entire previous level.
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Nonlocal models for fracture prediction
1. Material deformation
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Definitions

- x: reference position

- u: displacement

- x+ u: current position

xq
x′q

D
Dt

x+u(x, t)q
x′+u(x′, t)q

Undeformed body Deformed body

[x′ + u(x′, t)]− [x+ u(x, t)] = (I +∇u(x, t))︸ ︷︷ ︸
deformation gradient

(
x′ − x

)
+O(

∥∥x′ − x∥∥2
)

Deformation gradient is a local linear approximation of the true deformation

Nonlocal constitutive models depend on the actual deformation
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Nonlocal models for fracture prediction
2. Connections to classical (local) continuum mechanics
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Nonlocal equation of motion

ρ(x)
∂2u

∂t2
(x, t) =

∫
D

{
T [x, t]

〈
x′ − x

〉
− T

[
x′, t

] 〈
x− x′

〉}
dVx′+b(x, t)

If: (a) deformation is twice continuously differentiable in space and time
(b) T is a continuously differentiable function of the deformation and x

ρ(x)
∂2u

∂t2
(x, t) = ∇· ν(x, t) + b(x, t)

with the nonlocal stress tensor [Silling, Lehoucq ’08]

ν(x, t) =

∫
S

∫ δ

0

∫ δ

0

(w + z)2T [x− zm, t] 〈(w + z)m〉 ⊗mdzdwdΩm

Piola-Kirchhoff stress tensor

δ → 0
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Nonlocal models for fracture prediction
3. Connections to higher-order gradient theories
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One-dimensional example [Seleson, Parks, Gunzburger, Lehoucq ’09]

ρ
∂2u

∂t2
(x, t) =

∫ δ

−δ

c

|ξ| (u(x+ ξ, t)− u(x, t))dξ + b(x, t)

ρ
∂2u

∂t2
= K

[
∂2u

∂x2
+
δ2

24

∂4u

∂x4
+

δ4

1080

∂6u

∂x6
+ . . .

]
+ b(x, t)

ρ
∂2u

∂t2
(x, t) = K

∂2u

∂x2
(x, t) + b(x, t)

If u smooth enoughc =
2K

δ2

δ → 0

Many
length scales

-

No length scale -
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Nonlocal models for fracture prediction
4. Applications
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Applications over wide range of length/time scales

-

6

1Å 1nm 1µm 1mm 1m

1fs

1ps

1ns

1µs

1s

1h

Time

Length

Nanofiber
network

[Askari, Bobaru, Lehoucq, Parks, Silling, Weckner ’08]

Polycrystal
microstructure

[Ghajari, Iannucci, Curtis ’14]

Brittle cylinder

[Peridigm Users’ Guide v1.0.0]
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Nonlocal models for fracture prediction
4. Applications
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Comparison with experiments

[Kalthoff ’00] [Bowden, Brunton, Field, Heyes ’67] [Anderson, Nicholls, Chocron, Ryckman, ’06]

[Silling ’03] [Simulation by Parks in PDLAMMPS] [Foster, Silling, Chen, ’10]

Experiment

Simulation

Fracture in steel
(Kalthoff-Winkler)

Crack branching
in soda-lime glass

Taylor impact test
with 6061-T6 aluminium

70o
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Nonlocal models for fracture prediction
5. Constitutive models
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Ordinary materials [Silling, Epton, Weckner, Xu, Askari ’07]

T = τ M,

T [x, t] 〈ξ〉 = τ [x, t] 〈ξ〉︸ ︷︷ ︸
scalar-valued

ξ + η

|ξ + η|︸ ︷︷ ︸
bond direction

x+u(x, t)

x′+u(x′, t)

T [
x,
t]
〈ξ
〉

T [
x
′, t

]〈−
ξ〉

 

 

ξ = x′ − x: relative position ; η = u(x′, t)− u(x, t): relative displacement

Example: Elastic Material - Linear Peridynamic Solid

τ [x, t] 〈ξ〉 =

[
(3K − 5G)θ[x, t] + 15G

‖ξ + η‖ − ‖ξ‖
‖ξ‖

]
ω〈ξ〉 ‖ξ‖

m

K: bulk modulus, G: shear modulus, ω: influence function

Weighted volume Dilatation

m =

∫
H(0,δ)

ω〈ξ〉 ‖ξ‖2 dVξ ; θ[x, t] =
3

m

∫
H(x,δ)

ω〈ξ〉 ‖ξ‖ ‖ξ + η‖ dVx′



FORMULATE Team Motivation and goals Mathematical innovations Applications to nonlocal Deliverables

Nonlocal models for fracture prediction
5. Constitutive models
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Non-ordinary materials [Silling, Epton, Weckner, Xu, Askari ’07]

Example: Classical correspondence models

T [x, t]〈ξ〉 = ω〈ξ〉σ(F̄ )(x, t)K−1ξ

ω: influence function, σ: classical stress tensor

ξ = x′ − x: relative position ; η = u(x′, t)− u(x, t): relative displacement

Shape tensor

K =

∫
H(0,δ)

ω〈ξ〉ξ ⊗ ξdVξ

Approximate deformation gradient

F̄ (x, t) =

(∫
H(x,δ)

ω〈ξ〉(ξ + η)⊗ ξdVx′
)
K−1

We can incorporate existing classical complex material models
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Nonlocal models for fracture prediction
6. Simulation example
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Meshfree discretization [Silling, Askari ’05]

Given the nonlocal equation of motion

ρ(x)
∂2u

∂t2
(x, t) =

∫
D

{
T [x, t]

〈
x′ − x

〉
− T

[
x′, t

] 〈
x− x′

〉}
dVx′+b(x, t)

we discretize the body D with a set of nodes forming a cubic lattice

i•

H(xi, δ)

i

j
�
��
Vj

• • • •••••

• • • •••••

• • • •••••

• • • •••••

• • • •••••

• • • •••••

• • • •••••

•

to get

ρi
d2ui
dt2

=
∑
j∈Fi

{T [xi, t] 〈xj − xi〉 − T [xj , t] 〈xi − xj〉}Vj + bi

Fi = {j : ‖xj − xi‖ ≤ δ, j 6= i}
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Nonlocal models for fracture prediction
6. Simulation example
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Criterion for Material Failure [Silling, Askari ’05]

Let the stretch be

s(x, x′, t) = (‖ξ + η‖ − ‖ξ‖)/ ‖ξ‖

ξ = x′ − x ; η = u(x′, t)− u(x, t)

Breaking bonds

µ(x, x′, t) =

{
1 s(x, x′, t̃) < s0 for all 0 ≤ t̃ ≤ t

0 otherwise

 

  

Example: Prototype Microelastic Brittle (PMB) Model

T [x, t] 〈ξ〉 =
1

2
µ(x, x′, t)︸ ︷︷ ︸
Boolean variable

s(x, x′, t)︸ ︷︷ ︸
Force magnitude

ξ + η

‖ξ + η‖︸ ︷︷ ︸
Force directionDamage

ϕ(x, t) := 1−

∫
H(x,δ)

µ(x, x
′
, t)dVx′∫

H(x,δ)
dVx′

; 0 ≤ ϕ(x, t) ≤ 1

ϕ(x, t) = 0→ pristine material ; maximum damage is one
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Nonlocal models for fracture prediction
6. Simulation example
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Example: 3D fracture dynamics

• Projectile • Target

- Sphere: diameter 14.80 mm - diameter 74 mm
- thickness 1.25 mm

- Mesh spacing ∼0.5 mm - Mesh spacing ∼1 mm
- Horizon 3.1 mm - Horizon 3.1 mm
- 8,497 particles - 22,953 particles

- Bulk modulus 160.90 GPa - Bulk modulus 14.90 GPa
- Shear modulus 78.30 GPa - Shear modulus 8.94 GPa

- Density 7700 kg/m3 - Density 2200 kg/m3
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6 month deliverables

For 0 < α < dx + 2, we intend to start with a random field c(x, x′, t,y):

T [x, t,y] 〈ξ〉 =
c(x, x′, t,y)

‖ξ‖α (ξ ⊗ ξ) η, with ξ = x′ − x, η = u(x′, t,y)− u(x, t,y)

1 Develop the theory for the regularity of the solution map y 7→ u( · ,y) of (1) given
the constitutive relationship above. Develop a priori and a posteriori estimates for
bound on the polynomial coefficients cν .

2 Computationally recover the multi-dimensional solution u( · ,y), using best s-term
interpolation and weighted `1 optimization for problems with d ≤ 200.

Initial DAG implementation on TITAN at ORNL.

3 As the number of uncertainty variables increases, we will theoretical and
numerically study the influence of the stochasticity in the material properties on
material response.

4 Develop derivative-free approximations of likelihood-informed subspaces, and use
this to develop efficient MCMC sampling algorithms.
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Risks and mitigation plans

Risk: We expect that the solution map y 7→ u( · ,y) will maintain some regularity but
it is conceivable that the strong nonlinear phenomena will induce irregularities.

Mitigation: To develop nonlinear reconstruction methods when y 7→ u( · ,y) becomes
irregular, which will exploit local variations in smoothness of u.

Extend the best s-term approximation, from a sparse linear space (projection) to
include a dictionary [DeVore ’98].

Employ suitable versions of nonlinear N -widths to construct adaptive partitioning
of the parameter domain as to balance out the variations of local smoothness.

Risk: The quality of the experimental data is not sufficiently accurate or noisy, so that
the developed coarse-grained stochastic nonlocal models cannot be properly validated.

Mitigation:

De-noise the data with filtering and compressed sensing techniques, and exploit
advanced design of experiments techniques to use both legacy data as well as
conduct a new set of improved experiments to generate satisfactory data.

Possibly generate data from expensive molecular dynamics simulations.
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Risks and mitigation plans

Risk: Maintaining focus can be challenging due to the diversity of expertise
(mathematics, computational and material science, engineering, and extreme-scale
computing), as well as a diversity of institutions and locations (universities and labs in
both US and Europe).

Mitigation:

Centrally locating the administrative tasks at ORNL will leverage the lab’s
considerable resources for, and experience with, managing large-scale projects,
allowing the scientists to spend the majority of their time conducting research.

Currently scheduling monthly teleconferences with the entire team (of PIs) and
bi-weekly meetings with the ORNL mathematicians and material scientists.
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