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als #(OAK RIDGE

e T [ I licati I fract "X National Laboratory
Ion for large-scale applications or materials rracture B OREUTATIONAL & APPLIED MATHENATICS

The goals of FORMULATE

We will design a set of fundamentally novel mathematical approaches for UQ used to
predict and control the probability of a deformation (i.e., fracture) of a material,
leading to a catastrophic failure of a designed structure.

o Critical limitation in deciding the reliability and lifetime of a designed structure for

application deployment to aerospace, marine and high-energy applications
[Materials genome initiative, 2011].

6 Clayton G. Webster and Pablo Seleson — EQUIiPS Kickoff Meeting, DARPA — November 9-10, 2015 4/38



FORMULATE Team  Motivation and goals Mathematical innovations Applications to nonlocal Deliverables

Motivation & goals %OAK RIDGE

q . o f _“X National Laboratory
Uncertainty quantification for large-scale applications of materials fracture O A TTONAL S APPD TS

The goals of FORMULATE

We will design a set of fundamentally novel mathematical approaches for UQ used to
predict and control the probability of a deformation (i.e., fracture) of a material,
leading to a catastrophic failure of a designed structure.

o Critical limitation in deciding the reliability and lifetime of a designed structure for
application deployment to aerospace, marine and high-energy applications
[Materials genome initiative, 2011].

“The pentagon confronts new enemy: RUST" [Wired, 2012].

“...fighting corrosion costs the DOD (Air Force and Navy) over 3% of the
national GDP, or about $1,000 per person per year.”

“Recent blade failures underscore importance of risk mitigation” [The Bakken, 2014]

Gas turbine blades: “Failures in nickel-based superalloys can occur by
various mechanisms that are operative at high temperatures...typically creep
and stress rupture.”

Wind turbine blades: “Rapid large-scale structural fracture is not a common
failure mode and is often due to some sort of manufacturing defect.”
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DOD applications

Ship propeller/rudder

Conomon

Vehicle armor

Fatigue

Satellite structure
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The basic idea... %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

To improve the predictability of fracture models we will extract knowledge from both
fine-scale simulations and experimental data, which when combined with extreme-scale
computing, will be used to conduct simulation code verification, model calibration,
validation, bias correction, and even control of high-fidelity solutions.
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Concurrent coupling and PrEdiCtive
model adaptivity used for . -
simulation

multiscale simulation

Air Turbine

Relative entropy used to
improve CG models

Bayesian inference used
for model selection

OAK RIDGE

1 ¥
_“X National Laboratory

COMPUTATIONAL & APPLIED MATHEMATICS

(V]

3 Validation

g| Coarse data

= graining Bayesian inference used
Coarse-Grained Model Lt 2idate CG model

Calibration
data

Bayesian inference used
Polycrystal System to calibrate CG model

Length scale
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within FORMULATE

Fine Scale

PDF o (y©)

Fine Scale Uncertain
Material Properties

y® =@ 0k)

Model £© and Multifidelity

model selection

Calibration
Data D¢
Exascale
UQ paradigm

High-di
approximation

Computational

Stochastic design and
risk-averse optimization

imensional

Scalable
Bayesian inference
k=K

Scalable
Bayesian inference

Predictive Materials
and Rare Event
Detection
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A nonlocal model for fracture prediction %OAK RIDGE

"X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

We propose a generalized continuum theory based on spatial integration, that
employs a nonlocal model of force interaction. Key components: @ can recover
classical fracture mechanics or peridynamics through the definition of the constitutive
relationship; @ no differentiability assumption of displacement fields.

Nonlocal equation of motion

o(x )8t2 / {T x, t x fx> T[:v’,t] <:cfx'>}de/+b(x,t)

p material density, u displacement field, b body force density, D C R*2:3.

Force vector state
T [z,t] (-): “bond” — force per volume squared
Neighborhood
H(z,8) == {2’ e R?: |2’ — || <6} D
= Tz, t]{(z' —x) =0, for ||z’ —z| > 9
4 is the horizon (length scale)
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Nonlocal equation of motion

o) w1 [ (Tled@-TE 0 v +ben @
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ture prediction with uncertainty %OAK RIDGE

"X National Laboratory
COMPUTATIONAL & APPLIED MATHEMATICS

Nonlocal equation of motion with uncertainty
02 /
@) Gyt (@tw) = [ {T0© = T[] (O} Ve +botow) (1)

o Random vector y; € U, C R™ coming from the external loadings
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acture prediction with uncertainty %OAK RIDGE
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Nonlocal equation of motion with uncertainty
oz, y2) o2 (az,t,y / {T z,t] (&) — [:c t] }de/ + b(z,t,y1) (1)

o Random vector y; € U, C R™ coming from the external loadings
o Random vector y2 € Uy, C R%2 coming from the material distribution
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fracture prediction with uncertainty %NOAKIIL{{DGE
"X National Laboratory

COMPUTATIONAL & APPLIED MATHEMATICS

Nonlocal equation of motion with uncertainty

0%u
plw) Gy @ tw) = [ {Tlestysl € = T [ t.0] (-6} dVr + byt 9)
D
(1)
o Random vector y; € Uq, C R4 coming from the external loadings

@ Random vector y2 € Uy, C R? coming from the material distribution
@ Random vector y3 € U, C R? coming from the constitutive relation
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el for fracture prediction with uncertainty %OAK RIDGE

"X National Laboratory
COMPUTATIONAL & APPLIED MATHEMATICS

Nonlocal equation of motion with uncertainty

0%u
p(my y2)ﬁ(x7 t, y) = / {T [Z’, t, y3] <€> -T I:xl7 L, y3] <_§>} dVﬂ?’ + b(l’, t, yl)
D
(1)
Random vector y; € Uy, C R™ coming from the external loadings
Random vector yo € Ua, C R* coming from the material distribution

Random vector y3 € Uy, C R? coming from the constitutive relation

In addition, we may have uncertainty in the initial and boundary conditions, e.g.,
displacement, traction.
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A nonlocal model for fracture prediction with uncertainty %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Nonlocal equation of motion with uncertainty

p(az,yz)g%(x,t, y) = /D {T[m,t,yg] & -7 [m',t,yg] <*§>} dVyr +b(z,t,y1)
(1)

Random vector y1 € Uy, C R? coming from the external loadings
Random vector y2 € Uy, C R% coming from the material distribution
Random vector y3 € Uy, C R9s coming from the constitutive relation

In addition, we may have uncertainty in the initial and boundary conditions, e.g.,
displacement, traction.

® 6 o o

Let U =Uq, x Ugy X - X Ug, C RY, (Q, F, P) a probability space, and y : @ = U a
random vector with joint probability density function o : Uf — R4

o In this setting (€2, F, P) is equivalent to (I, B(T"), o(y)dy), where B(I') denotes
the Borel o-algebra on I and o(y)dy is the probability measure of y.

Goal: given a query y € U, quickly approximate the solution map y — u(-,y). J
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Grand challenges %OAK RIDGE

"X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

We must overcome several challenges which arise when applying UQ methodologies to
the high-dimensional stochastic model for fracture prediction:

@ Thrust area 1: Rigorous mathematical analysis and massively scalable algorithms
which alleviate the curse of dimensionality (CoD) and reduce the computational
burden of accurate stochastic solutions;

@ Thrust area 2: Robust approaches that are capable of reducing model
uncertainties and improving model predictability, by assimilating experimental data
and exploiting multifidelity models;

© Thrust area 3: A theoretical framework for stochastic design and decision-making
under uncertainty, that uses multiple, high volume data sources and multi-index
hierarchical modeling capabilities, and;

@ Thrust area 4: Scalable algorithms for UQ that exploit greater levels of
parallelism provided by emerging many-core architectures.
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Task 1 %OAK RIDGE

_“X National Laboratory

Best s-term linear and nonlinear methods e e e

Let v = (v1,...,v4) € A C N a multi-index set, and ¥, be multivariate polynomials.
Approximate the solution u by:

Az ty) =) (@ t)Wu(y) € Pa(U) = span{®u(y), v € A} (2)
veA

o The efficiency of such methods heavily depends on the selection of A.

o Standard approaches: impose index sets A a priori. The cardinality of the
polynomial space P5 (U) can grow exponentially with respect to the dimension d.

Tensor Product Total Degree Hyperbolic Cross Smolyak
Alw) = {v € NY: max v < w} Aw) = {reNY: Y v <w} Aw)={reNY: JJm+ ) w+1}  Aw) ={reNV: D f(n) < f(w)}
with f(v) = [log,(v)], v = 2.

Goal: construct the “optimal” A C N% has minimal cardinality and enables the
approximation of y — u(y) with maximum accuracy for a given computational cost.

Clayton G. Webster and Pablo Seleson — EQUIiPS Kickoff Meeting, DARPA — November 9-10, 2015 11/38



FORMULEATE Team  Motivation and goals Mathematical innovations Applications to nonlocal Deliverables

Best s-term approximations using L?(U, o) projections %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Goal: Construct the optimal set A%t of s most effective multi-indices with respect to
sharp estimates B(v) of ||cu||v [Cohen, DeVore, Schwab '12, '13], [Tran, Webster, Zhang
'15]:

_ d 1—1
sup ||lu — Z P, < Z levlly < Cese™™mds < 1B@)lepvays™ P
yel VGAEeSt u&AbES‘
E V s
@ Provides the sharpest realizable best s-term (sub-exponential) convergence rate
with optimal x in very high-dimensions.

o Challenge: Estimates of B(v) are difficult and somewhat problem dependent.

Task 1.1: To develop a priori and a posteriori procedures for building A% in the
context of the nonlocal model (1).
© a priori: are derived using knowledge from the uncertainty in the input data

© a posteriori: adaptively build nested sequences (As)s>¢ of APt at a cost that
scales linearly in #(As): given As, construct As41 by enriching As with the most
effective indices v in its neighborhood, which results in the best residual reduction.
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Non-intrusive recovery of the best s-term approximation %(N)AK}L{%DGE
ational al oratory

. . : best
1. Sparse interpolation in As OMPUTATIONAL & APPLIED ATHEMATICS

Goal: Construct a hierarchical interpolant in P pest (U), on a set of distinct collocation
points:

d
Tyl = Y ®(J”<”") T ] and G = () Q) {wna} i

l,eAgest n=1 VGAEESt n=1

o J"™¥n) is a sequence of one-dimensional Lagrange interpolation operators using
abscissas {yn, k}m(y"> C Uy, with m(v) : Np — Ny a strictly increasing function.

o Challenge: To recover the best approximation: @ the Lebesgue constant ILyves: of
the underlying abscissas must grow slowly, and; @ #(Gppest) = dim(Pppest (U)) = s
C {Ynktrey and m(v) = v+ 1.

m(un—l) m(l’n)

= abscissas satisfy {yn i},
Task 1.2: To explore greedy approaches, wherein, given the sequence {yk}kK:jl with
K = m(vy), the Kth abscissa is chosen as the extrema of some functional, e.g., a
residual (Leja points), Lebesgue function, etc.

o Computationally construct the multi-dimensional interpolant, and theoretically
prove a sharp bound on the corresponding multi-dimensional Lebesgue constant.
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Non-intrusive recovery of the best s-term approximation %(N)AK}L{%DGE
ational al oratory

2. Compressed sensing reconstruction using weighted ¢; and hard thresholding e e e

Goal: Given a set Ag of N multi-indices (could be far from optimal), find an
approximation of (2) comparable to the best s-term (s < N).

@ ¢, = c,(x,t) is a function that belongs to a Banach space V = ¢ € V", equipped
with the norm: ||c||v,, = (vazl HclH’{,)l/p

o Challenge: Here compressed sensing reconstruction involves randomly sampling
u = (w(Yx))k=1,....,m € V™, and solving the underdetermined linear system
u=Yc, where ¥ = (U, (y;)) is an m x N sampling matrix.
= ¢ = argmin||¢||v,1 subject to u = We.

@ Best available estimate to guarantee uniform recovery (with high probability) is
m > CK?5 %slog?(s) log(N) [Chkifa, Tran, Webster '15]

Task 1.3: To guarantee the algorithms overcome the curse of dimensionality we will
develop innovative:
o weighted ¢1 (e.g., wy = ||V, || ) techniques for optimal recovery that exploit the a
priori and a posteriori decay of (||cu||v)ven,-

o tractable “hard thresholding” operators that iteratively exploit the structure (e.g.,
lower or downward closed sets) of the best s-term index set.
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Task 2 %OAK RIDGE

_“X National Laboratory

A hierarchical Bayesian framework for inverse problems e e e

Goal: Construct a hierarchical Bayesian framework to simultaneously quantify both
parameter and model-form uncertainties.

@ In a hierarchical Bayesian framework, we have
Hyper-prior: @ ~ g, Prior: y|0 ~ pi,e, Data density: d|(y, 0) ~ 04)(y,0)-

@ The Qol Q : U X ©® — R can be estimated by its posterior expectation

L y.0)a 1
E(Q|d) = 7] dy, d@ th ————(y,0) = —— d
(Qld) MX@Q(?/, )N(y,a)m( y,dd) wi dpo (y,0) Z(d)Qd|(y,9)( )s

where Z(d) = [ 04j(y,0)(d)dpo and po(dy, d8) = iy6(dy)pe(dO).
o Let 0 to be a discrete random variable representing a set of alternative models:
— 1o|a(d8) o< ([, 0d|(y,0)Hy|6(dY)) 1o (dO) allows model selection.
~ ly|a is the model-averaged posterior.

@ The overall task is to draw samples from the posterior ji(y ¢y)a Or the marginals
fyla = [o y.0)al-d0) of peja = [, 1uy.0)a(dy, -)-
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Derivative-free dimension-independent sampling algorithms %OAK RIDGE

National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Goal: Develop black-box Markov chain Monte Carlo (MCMC) algorithms to sample
complex nonlinear and non-Gaussian posteriors over high-dimensional parameter spaces.

o Challenge: Most MCMC methods suffer in certain limits, as the parameter
dimension diml{/+dim© =: N — oo or the likelihood variance ¢ — 0.

o Dimension-independent (DI), likelihood-informed (LI) sampling algorithms:

o DI. By deriving the algorithm in the limiting function space, stability is ensured in
the limit N — oo;

o LI. Use of posterior concentration information from the likelihood Hessian ensures
stability in the limit o — 0.

Task 2.1: Develop and analyze Hessian-free (black-box) DILI algorithms .

o Likelihood-informed space will be identified from m—sample covariance with
m = O(N) (e.g. using robust regularized m-estimators);

o Will be used within DILI-type, adaptive Metropolis, or map-based proposals;

@ Application within hierarchical models, for model selection and averaging, etc.

16/38
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Multilevel sequential Monte Carlo (MLSMC) samplers %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS
:

Goal: Develop algorithms to sample complex nonlinear and non-Gaussian posteriors
with expensive forward model connecting parameter to data.
o Challenge: the cost of sampling is the product of (a) the cost to sample a scalar
random variable and (b) the cost of a single deterministic solve at given accuracy.

o Recently developed MLSMC samplers reduce cost for posterior sampling to the
minimum of (a) and (b).

Algorithm — MLsMc — sMc

MSE

o R o ‘

Cost ac 3%, Njiy? >
Task 2.2: Develop, analyze, and use ML and multi-index (MI) SMC for hierarchical
Bayesian computation.
o Current version assumes finite parameter. Extension will approximate continuous
parameter — multilevel in parameter also.

o Ml is a natural generalization of ML which will make the latter obsolete.
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Assimilating data for optimal recovery of the inverse map %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Goal: Recover an element u of a Hilbert space H from the measurement data of the
form £;(u),j = 1,...,m, where £; are known linear functionals on #.

o We assume that all possible states of u are described by a solution manifold
M={uly) : y eU}.

@ The data ¢;(u) for j = 1,..., m constitute a subspace W C H, and the
measurements determines the projection Py [u] € W.

o The task is to construct a mapping A : W — M, such that an approximation @ of
u can be defined by

= A(Pywl[u]).

o Challenge: it is usually expensive to find the optimal recovery of u in M, due to
the computational complexity of the underlying integro-PDEs.
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Reduced-basis methods for optimal recovery %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Task 2.3: To construct a near optimal recovery of u by exploiting a finite sequence of
reduced-basis subspaces Vo C V4 C --- C V,, C M, where V), approximates M with
accuracy ¢ for k=0,...,n.
o Develop novel iterative algorithms based on alternating projection techniques to
construct the optimal map A : W — K, where K is defined by

n

= ﬁ K; = m{u € M :dist(u, V;) < g;}.

@ Develop an a posterior estimate for measuring the performance of the new
algorithms, which can serve both as a stopping criteria in the algorithms and a
method to derive convergence rates.

o Theoretically analyze the optimality of the proposed method by proving that the
map A : W — K constructed using our algorithms has the following error bound

lu— A(Pw[u])|| < Ca dist(u, K),

with the smallest constant Cj4.

Clayton G. Webster and Pablo Seleson — EQUIiPS Kickoff Meeting, DARPA — November 9-10, 2015 19/38



FORMULEATE Team  Motivation and goals Mathematical innovations Applications to nonlocal Deliverables

Probabilistic graphical model approach %OAK RIDGE
_“X National Laboratory

Task 2.4:

@ Develop probabilistic graphical model framework for recovering the desired
posterior distribution or its marginals.

o Develop novel nonparametric belief propagation algorithms by employing loopy
belief propagation algorithms.

Probabilistic Graphical model framework I Main Procedure

Structure design Inference
* Decompose the joint : Ipferthg marginal
distribution on a graph distribution of the
using localized potentials resp.oqse (calculate the
Statisticss)

Training data
* Coarse scale physical
response (y)
* Fine scale microstructure
(A local reduced
representation s is used)

B

Surrogate model |

; Inference : ing
o Newt. ) Locall‘lnze: Ilnput - rertne Model Reduction fraph L:tahmmg
servation ode I | * Learningall the
of the input Reducti conditional ' Locallz.ed model unknowi parameters
P eduction distribution reduction scheme in the graph (EM)
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Task 3 %OAK RIDGE
q d . . 3 N 1L
Nonlocal constrained stochastic optimization under uncertainty OMPUTA:::S?WE:I)ZZ?;:Z

Goal: Find the material properties that match the desired material behavior
Find state u*(y) and constitutive relationship 7 (y) that solve

rﬁx}in K(T,u;9) subject to (1)

o K(T,u;9) = Elllu—glll +(T) = [, lu(y) — 9(@)llp(y)dy + 6(T).

o §(T) is the “cost” of T, e.g., the cost of manufactunng material with constitutive
relationship 7.

@ g(y) is the desired state of the system (target).

Challenge: minimizing the statistics of the difference ||u — g|| does not result in best
match between the statistics of u(y) and g(y).

New optimization paradigm:

r71_11n./\/l(7', u; g) subject to (1)

where M(T ,u; 9) = ¢, [E[u?] — E[g“]|| +8(7), and Q € N4
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Nonlocal constrained stochastic optimization %OAK RIDGE

_“X National Laboratory

Stochastic optimization under equality and inequality state constraint e e e

Task 3.1: To address the following fundamental problems
@ Analysis of the existence and uniqueness of the optimal solution
@ Derive optimality system for 7" and u*(y)
o Develop convergent finite element discretization schemes
o Implementation of the resulting methods for select model problems

@ Assess the robustness of the solution, i.e., the sensitivity of u*(y) to perturbations
of the constitutive relationship

o Incorporate previously developed methods, for the underlying forward
approximation, to develop efficient approaches for stochastic optimization
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Risk-averse optimization ¥.0AK RIDGE
L. N . . _“X National Laboratory
Optimization under inequality state constraint PR TONAL & Ao TD YRS

Goal: devise optimization procedure that avoids catastrophic scenarios

Let F(u) be a functional and define undesirable situation by F(u) > «.
Challenge: directly imposing —F(u) + a > 0 is not always feasible

Example: Suppose F'(u) indicates damage to the material from impact and F(u) > «
indicates critical damage that leads to system failure. We want to minimize the
expected damage under events appearing with probability 1 — 3, i.e., we accept risk 3.

Task 3.2: To incorporate risk-averse approach to PDE context

min E[F (u)] = min(1 — §) "' / F(u)pdy

F(u)zag(u)

where ég(u) = min{a@ € R : U(u,&) > B} and ¥(u, &) = fF(u)<d p(y)dy
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Task 4 %OAK RIDGE

_“X National Laboratory

Scalable sampling paradigm OMPUTATIONAL & APPLIED MATHEMATICS

Goal: develop sampling strategy that exploits extreme parallel architectures

Sample 1 Sample 1

Sample N Sample M

Recovering the best s-term approximation requires adaptive sampling

Adaptive
Refinement

Initial
Setup

(4]

The current paradigm of adaptive sampling employs iterative approach

The next iteration cannot begin unless the entire current set has been computed

@ Multilevel methods, multifidelity models, and random hardware faults result in
large variability of runtime associated with each sample

@ The current sampling strategies are very sensitive to runtime fluctuations

Challenge: Develop a sampling strategy that avoids global iterations and exploits
massive parallelism
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ampling paradigm %gﬁg&%&g&

t advanced in work-flow based on directed acyclic graphs Ot LS APoLID ST

Task 4.1: Asynchronous sampling procedure
@ The directed acyclic graph (DAG) approach does not require a global decision

o DAG-based job scheduling is the current practice for massive parallelism

o Nodes of the graph correspond to samples

Edges correspond to dependence, i.e., information required to decide whether this
sample is needed to construct the best s-term approximation

@ The nodes and edges have to be constructed “on-the-fly”, unlike standard
applications of the DAG approach

| Sample 7 || Sample 8 || Sample 9 |

¥
| Sample 10 || Sample 11 || Sample 12 |

Example: Samples 5 and 6 take less time to compute and samples 8 and 9 take more
time, then samples 10 and 11 can start without waiting for the entire previous level.
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Nonlocal models for fracture prediction %OAK RIDGE

_“X National Laboratory

1. Material deformation OMPUTATIONAL & APPLIED ATHEMATICS

Definitions Undeformed body Deformed body

- x: reference position
- u: displacement e

- x 4+ wu: current position

[z + u(@’ )] — [z + u(z,t)] = (I + Vu(z,t) (z' — z) + O(||2" — av”z)

deformation gradient

Deformation gradient is a local linear approximation of the true deformation

Nonlocal constitutive models depend on the actual deformation
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Nonlocal models for fracture prediction %OAK RIDGE

_“X National Laboratory

2. Connections to classical (local) continuum mechanics e e e

Nonlocal equation of motion

p(x)%(x,t) = /D {T e, t] (&' =) =T [2/,t] (x — ") } AV +b(x, t)

If: (a) deformation is twice continuously differentiable in space and time
(

b) T is a continuously differentiable function of the deformation and z

&*u

p(x)ﬁ(m, t) =V -v(z,t)+ b(z,t)

with the nonlocal stress tensor [Silling, Lehoucq '08]

v(z,t) = / /05 /Oa(w +2)*T [z — 2m, t] ((w + 2)m) @ m dzdwdQm,
‘ 0—0

Piola-Kirchhoff stress tensor
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Nonlocal models for fracture prediction %OAK RIDGE

_“X National Laboratory

3. Connections to higher-order gradient theories e e e

One-dimensional example [Seleson, Parks, Gunzburger, Lehoucq '09]

&*u

8
PG ) = [ e 60— ula,0)de + .

_ 2K ‘ If 4 smooth enough
52

Many 82’!1, B a2u 62 84 ()4 86 b
length scales P =K\ 502t 21021 T 10808z T TEED
l 0—0
0*u *u
No length scale —— pw(x, t) = Kw(x,t) + b(x,t)
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local models for fracture prediction %OAK RIDGE

_“X National Laboratory

plications COMPUTATIONAL & APPLIED 1/ATHEMATICS

Applications over wide range of length/time scales

Time Brittle cylinder
1h Polycrystal
microstructure
N
Is Nanofiber
network
S,
<
1ns m [Peridigm Users’ Guide v1.0.0]
1ps [Ghajari, lannucci, Curtis '14]
1fs [Askari, Bobaru, Lehoucq, Parks, Silling, Weckner '08] Length
1A 1nm lpum 1mm Im
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Nonlocal models for fracture prediction %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

4. Applications

Comparison with experiments

Fracture in steel Crack branching Taylor impact test
(Kalthoff-Winkler) in soda-lime glass with 6061-T6 aluminium

Experiment ‘70/0

[Kalthoff '00] [Bowden, Brunton, Field, Heyes '67] [Anderson, Nicholls, Chocron, Ryckman, '06]

Simulation

[Silling '03] [Simulation by Parks in PDLAMMPS] [Foster, Silling, Chen, '10]
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Nonlocal models for fracture prediction %OAK RIDGE

N _“X National Laboratory
5. Constitutive models OMPUTATIONAL & APPLIED ATHEMATICS

Ordinary materials [Silling, Epton, Weckner, Xu, Askari '07] o'+ u(a’, t)
/\
T=1M, @ N
¢ ,(\¢“ AN
+n /
T [, 1] (§) = 7 [2,t] (£)
N——r |£ + 77| c+u(xz,t)

scalar-valued N

bond direction
¢ =’ — x: relative position  ;  n=u(z',t) — u(z,t): relative displacement

Example: Elastic Material - Linear Peridynamic Solid

et € = [0 — 56tz 1) + 1561 eI O ]

K: bulk modulus, G: shear modulus, w: influence function

Weighted volume Dilatation

m = w(@llE*dve 5 Olat] = % w(&) IEINIE +nll dVar
7(0,) H(z,8)
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Nonlocal models for fracture prediction %OAK RIDGE
N _“X National Laboratory
5. Constitutive models OMPUTATIONAL & APPLIED ATHEMATICS

Non-ordinary materials [Silling, Epton, Weckner, Xu, Askari '07]
Example: Classical correspondence models
Tle, () = w(€)o(F)(z, )K€
w: influence function, o: classical stress tensor
¢ = a’ — x: relative position ;1 =wu(a2',t) —u(z,t): relative displacement
Shape tensor

K= w(€)€ ® EdVe
H(0,8)

Approximate deformation gradient

Fla,t) = L L eOE ) o8 | K

We can incorporate existing classical complex material models
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Nonlocal models for fracture prediction

6. Simulation example

Meshfree discretization [Silling, Askari '05]

Given the nonlocal equation of motion

%OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

o(x )8752 (z,t) / {Tla,t](a" —a) =T [2/,t] {x — ") } AV +b(x, t)

we discretize the body D with a set of nodes forming a cubic lattice

e|leofe]e

o

Vi

A

[o]e]]e

=) [

to get hl I 2 B

P ST [t g — 1) — Tl 8] o — )}V + b

dt? -
JEF;

Fi={j + llzj —zll <6, # i}
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Nonlocal models for fracture prediction %OAK RIDGE

_“X National Laboratory

6. Simulation example OMPUTATIONAL & APPLIED MATHEMATICS

Criterion for Material Failure [Silling, Askari '05]
Let the stretch be

s(z,2’,t) = ([l€+nll = 1€/ €]l
§:x/7x ; n:u(xlvt)fu(xvt)
Breaking bonds

, 1 s(x,a’,t) < soforall0 <<t
wlz, o' t) = .
0 otherwise

Example: Prototype Microelastic Brittle (PMB) Model

1 +
Tl () = ple,a’,6) staa, ) o
2 e —— [IE+1ll
Boolean variable Force magnitude
Da mage Force direction
/ ,u.(z,:v,,t)de/
ez, t) :==1— H(z,9) i 0< oz, t) <1
Vi
H(z,8)
p(x,t) = 0 — pristine material ~ ; maximum damage is one
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racture prediction %OAK RIDGE

"X National Laboratory
COMPUTATIONAL & APPLIED MATHEMATICS

Example: 3D fracture dynamics

i

[ e Projectile [ e Target
- Sphere: diameter 14.80 mm - diameter 74 mm
- thickness 1.25 mm
- Mesh spacing ~0.5 mm - Mesh spacing ~1 mm
- Horizon 3.1 mm - Horizon 3.1 mm
- 8,497 particles - 22,953 particles
- Bulk modulus 160.90 GPa - Bulk modulus 14.90 GPa
- Shear modulus 78.30 GPa - Shear modulus 8.94 GPa
- Density 7700 kg/m?> - Density 2200 kg/m"
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6 month deliverables %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

For 0 < a < dz + 2, we intend to start with a random field c(x, 2, t,y):

c(z,2',t,y)

e €@ withe=a'—a n=ulLy) —ulety)

T [z, t,y](§) =

O Develop the theory for the regularity of the solution map y — u(-,y) of (1) given
the constitutive relationship above. Develop a priori and a posteriori estimates for
bound on the polynomial coefficients c,..

@ Computationally recover the multi-dimensional solution u( -, vy), using best s-term
interpolation and weighted ¢; optimization for problems with d < 200.

o Initial DAG implementation on TITAN at ORNL.

© As the number of uncertainty variables increases, we will theoretical and
numerically study the influence of the stochasticity in the material properties on
material response.

@ Develop derivative-free approximations of likelihood-informed subspaces, and use
this to develop efficient MCMC sampling algorithms.
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Risks and mitigation plans %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Risk: We expect that the solution map y — u(-,y) will maintain some regularity but
it is conceivable that the strong nonlinear phenomena will induce irregularities.

Mitigation: To develop nonlinear reconstruction methods when y — u(-,y) becomes
irregular, which will exploit local variations in smoothness of w.

o Extend the best s-term approximation, from a sparse linear space (projection) to
include a dictionary [DeVore '98].

o Employ suitable versions of nonlinear N-widths to construct adaptive partitioning
of the parameter domain as to balance out the variations of local smoothness.
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Risks and mitigation plans %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Risk: We expect that the solution map y — u(-,y) will maintain some regularity but
it is conceivable that the strong nonlinear phenomena will induce irregularities.

Mitigation: To develop nonlinear reconstruction methods when y — u(-,y) becomes
irregular, which will exploit local variations in smoothness of w.

o Extend the best s-term approximation, from a sparse linear space (projection) to
include a dictionary [DeVore '98].

o Employ suitable versions of nonlinear N-widths to construct adaptive partitioning
of the parameter domain as to balance out the variations of local smoothness.

Risk: The quality of the experimental data is not sufficiently accurate or noisy, so that
the developed coarse-grained stochastic nonlocal models cannot be properly validated.
Mitigation:

o De-noise the data with filtering and compressed sensing techniques, and exploit

advanced design of experiments techniques to use both legacy data as well as
conduct a new set of improved experiments to generate satisfactory data.

@ Possibly generate data from expensive molecular dynamics simulations.
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Risks and mitigation plans %OAK RIDGE

_“X National Laboratory
OMPUTATIONAL & APPLIED MATHEMATICS

Risk: Maintaining focus can be challenging due to the diversity of expertise
(mathematics, computational and material science, engineering, and extreme-scale

computing), as well as a diversity of institutions and locations (universities and labs in
both US and Europe).

Mitigation:

o Centrally locating the administrative tasks at ORNL will leverage the lab’s
considerable resources for, and experience with, managing large-scale projects,
allowing the scientists to spend the majority of their time conducting research.

o Currently scheduling monthly teleconferences with the entire team (of Pls) and
bi-weekly meetings with the ORNL mathematicians and material scientists.
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